
34 The Delphi Magazine Issue 40

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Silent Night
A stocking full of algorithms

The house was quiet. My wife
had given up on law school

homework and fallen asleep on the
bed, the cats with her. I was in the
office, algorithm books spread
across the desk, researching graph
structures and algorithms for my
next Delphi Magazine column.
From the Windows 95 CD player
came the soft repetitive tune from
a Philip Glass piece helping me in
my contemplation of Dijkstra’s
algorithm. Outside it was a silent,
still night, leading up to a sharp
frost.

I was about ready to call it a
night, when I heard a rustling
behind me. I turned, expecting to
find that one of the cats had crept
in to keep me company, but was
surprised to see a rather portly
gentleman with a large white
beard, dressed in red, standing
behind my chair.

“What on Earth!” I started saying,
as a prelude to something intelli-
gent. I didn’t get there because he
placed his finger to his lips, turned
and shut the door.

“I’m the Father Christmas of Pro-
grammers,” he said. I must have
looked dubious, because he went
on. “Look, you’ll admit that it’s
impossible for a single Father
Christmas to deliver all those pres-
ents to all those people at all those
houses all on one night.” I nodded.
“So, there’s actually a whole bunch
of us, each one attending to one
particular segment of the market.
And I’m the one for programmers.”
He positively beamed at this. I sud-
denly noticed that his red jacket
had a pen protector in the top
pocket, filled with old pencils,
ballpoints and highlighters.

“So?” I asked.
“Well, normally I go around on

Christmas Eve, fire up program-
mers’ computers and leave them a
little source file containing an algo-
rithm in their \PROJECTS directory,
but to be honest, this year, I feel
like doing it another way. And
you’re going to help me.”

“Uh huh.” My brain still hadn’t
quite caught up yet and the
clip-clopping sound from the roof
above my head was distracting me
a little.

“Yes, you can write an article
containing several algorithms, get
it published as the December edi-
tion of your column, and I fulfill my
obligation to all the programmers
who’ve been good this year. And I
can put my feet up with a glass of
sherry on Christmas Eve and
watch the telly like everyone else.”
His eyes twinkled at the thought
and fell silent for a moment.

“Like what?” I said. “Normally I
write an article on a large topic,
one that will engage my readers,
and one from which I hope they’ll
have learnt something by the end.
Besides which, my Esteemed
Editor kind of expects it from me.”

“Oh come on, he’ll accept it. Oth-
erwise he won’t get any presents in
his stocking.” The twinkling had
gone and my blood ran cold at the
thought.

He suddenly swept all the books
off my desk before I had a chance to
protest. Somehow his hand flashed
though the air and plucked one out
of the air before it hit the floor.
“Mustn’t damage Knuth Volume
III,” he muttered as he set it on the
shelf. On my desk he placed a note-
book he’d retrieved from his
jacket. I just had a chance to spot
the model, Dellwaypaq 9000, on
the lid before he opened it. One
click of the mouse and Delphi 4
opened up in a heartbeat. He either
didn’t have any components on his
palette or this was one mean
machine.

“Right, what do you know about
credit card numbers?” he asked.

“Well, they’re a number with a
checksum. You apply some arith-
metic operation on the digits of the
credit card number including the
check digit and the result is sup-
posed to be zero. It’s one of a whole
class of similar self-validating num-
bers: ISBN numbers use a different

checksum algorithm, some
barcodes have check digits, and so
on. It’s supposed to catch a whole
class of operator input errors.” I
rummaged though my algorithms
file box for a moment or two and
pulled out a paper.

“Let’s see. Credit card numbers
are validated as follows. Take each
digit in turn, starting from the
right. Form a running sum. For the
digits in the odd positions (the
last, third-from-last, fifth-from-last,
etc), just add the digit to the sum.
For the digits in the even positions
(second-from-last, etc) multiply
each by 2. If the result of this multi-
plication is less than 10, add the
result to the sum. If the result is
greater than 10, add each of the
individual digits of the result to the
sum. The sum, after this is over,
must be a multiple of 10. In other
words, the sum mod 10 equals
zero. Apparently this algorithm is
known as the IBM mod 10 check.” I
scribbled on a pad. “Let’s try it on
123456789. Set my sum to zero.
Add in the 9. Double the 8, to make
16, and then add the 1 and the 6
separately to my sum. Add in the 7.
Double the 6, to make 12, and then
add the 1 and the 2 to my sum. Add
in the 5. Double the 4 to make 8 and
add it to my sum. Add the 3. Double
the 2 to make 4 and add it to my
sum. Add the 1. Grand total: 47.
Hence it fails the validation. How-
ever if the final digit were 2 instead
of 9 it’d pass.”

Father Christmas looked blank,
so I pulled his notebook over and
started coding. “Let’s assume that
we have a validation routine that
accepts a credit card number as a
string and returns whether the

December 1998 The Delphi Magazine 35

number is a valid number or not.
Furthermore the routine will just
ignore all characters that aren’t
numeric digits, so that the opera-
tor can enter numbers with spaces
or without, or with dashes or some-
thing.” I typed away for 5 minutes
and produced Listing 1.

“You said ISBN numbers follow a
similar scheme,” Father Christmas
said.

“Yes, but this time they use a
mod 11 check. We start from the
last digit again. Form a running
sum. Add the last digit, twice the
second-from-last digit, three times
the third-from-last, and so on. If the
number is long enough, we’ll add
10 times the tenth-from-last, the
eleventh-from-last, twice the
twelfth-from-last, and so on. The
final total mod 11 must be zero. If
you think about it, it may mean that
the last digit, the check digit, be ten
to pass the validation. Since ten is
not a digit, they use X instead, pre-
sumably from Roman numerals.”
Father Christmas’ eyes lit up at this
mention, but I went on. “Let’s use
Knuth Volume III’s ISBN number as
an example.” I picked up the book
from the shelf and opened it. “It’s
0-201-89685-0. Starting from the
end, we calculate (0*1) + (5*2) +
(8*3) + (6*4) + (9*5) + (8*6) + (1*7)
+ (0*8) + (2*9) + (0*10). Which pro-
duces a total of 176. And 176 mod
11 equals 0.” I typed some more
and produced Listing 2.

“Very good,” said Father Christ-
mas and offered me a can of cola.
We popped the rings and drank. He
burped delicately and continued.
“In your previous job writing soft-
ware for Swaps traders, you often
had to calculate the dates of the
third Wednesday of March, June,
September or December, because
they were the futures settlement
dates or something. How did you
do that?”

I had to switch tracks and think a
minute. “All right, let’s see. In those
days all this was done using my
own date unit, but let’s use
TDateTime variables and the rou-
tines in SysUtils instead. Firstly
you calculate the day of the week
that the first of the month falls on.
That’s easy. We use EncodeDate to
calculate the date of the first of the

function ValidateCreditCardNumber(const aValue : string) : boolean;
var
i, Total, Dbl : integer;
Ch : char;
IsOddPosn : boolean;

begin
if (aValue = '') then begin
Result := false;
Exit;

end;
Total := 0;
IsOddPosn := true;
for i := length(aValue) downto 1 do begin
Ch := aValue[i];
if IsDigit(Ch) then begin
if IsOddPosn then
inc(Total, ord(Ch) - ord('0'))

else begin
Dbl := (ord(Ch) - ord('0')) * 2;
inc(Total, Dbl);
if Dbl >= 10 then dec(Total, 9);

end;
IsOddPosn := not IsOddPosn;

end;
end;
Result := (Total mod 10) = 0;

end;

➤ Listing 1: Verify credit card numbers.

function ValidateISBN(const aValue : string) : boolean;
var
i : integer;
Total : integer;
Multiplier : integer;
FirstDigit : boolean;
Ch : char;

begin
if (aValue = '') then begin
Result := false;
Exit;

end;
FirstDigit := true;
for i := length(aValue) downto 1 do begin
Ch := aValue[i];
if FirstDigit then begin
if IsDigitOrX(Ch) then begin
if (Ch = 'X') then
Total := 10

else
Total := (ord(Ch) - ord('0'));

FirstDigit := false;
Multiplier := 2;

end
end else begin
{not the first digit}
if IsDigit(Ch) then begin
inc(Total, (ord(Ch) - ord('0')) * Multiplier);
inc(Multiplier);
if (Multiplier = 11) then
Multiplier := 1;

end;
end;

end;
Result := (Total mod 11) = 0;

end;

month in question. If we use
December 1998 as our example
month, then we code:

Dec_1_1998 :=
EncodeDate(1998, 12, 1);

“And then we use the DayOfWeek
function to return the day of the
week, a number from 1 to 7 with 1
representing Sunday and 4 for
Wednesday. Now comes the fun
stuff. The first Wednesday of a
month must be between the first to
the seventh day of the month, the
second must be between the 8th to
the 14th of the month, the third
Wednesday must appear between

15th and the 21st inclusive. If the
first of the month was a Sunday (a
DayOfWeek number of 1) then the
first Wednesday would be on the
4th, and hence the third would be
on the 18th, fourteen days later. If
the first of the month was a
Monday then the first Wednesday
would be on the 3rd and the third
Wednesday would be on the 17th.
And so on.”

Father Christmas took control of
his notebook and started coding.
“A first attempt at this might look
like this then,” he said, showing me
Listing 3.

➤ Listing 2: Verify ISBN.

36 The Delphi Magazine Issue 40

“Pretty good,” I said. “For main-
tenance’ sake I’d probably leave it
like that as well, maybe replacing
the 4s with some named constant
to make it clear. Essentially, that’s
what my old code did. Of course, in
my line of work at the time that cal-
culation was all I needed, but it
would be better to make the rou-
tine more generic so that you could
calculate the first Sunday, the
fourth Friday, or whatever. You’d
pass the year and the month, the
day of the week and which one you
wanted: the first one, the second,
or whatever.”

He typed away again and pro-
duced Listing 4. Just to needle him
a little, I said, “Of course, now you
can calculate the ISO week of the
year for a given date, providing you
know that week 1 always contains
the first Thursday of the year and
the first day of a week is Monday.”
He looked askance at me while he
thought, and then typed away. List-
ing 5 was the result, after a bit of
testing and realizing that a date in a
given year could appear in the final
few days of the final week of the
previous year.

I must have needled his pro-
gramming prowess, for then he
came back with a rather barbed
comment. “One of my elves tells
me that you were having a problem
passing data around with Winsock
the other day and it took you a
couple of days to resolve the bug.
Care to elucidate?” I held my

tongue from a rather barbed com-
ment of my own, after all I like pres-
ents on Christmas Day as well, and
started explaining.

“TCP/IP communications using
Winsock has guaranteed delivery. I
knew that. However, it is not a
block-oriented communications
protocol, but a streaming protocol.
In other words, if I send two blocks
of data from one machine to
another, then the receiver may get
the same two blocks of data, or,
depending on the loading of the
machines or the network, just one
block containing both my original
blocks, or three or more blocks,
each with some part of my original
blocks. I would be responsible for
parsing out my original blocks at
the receiver. In my rush to code
this bit of code, I’d forgotten that
TCP/IP was such a protocol, and

had assumed that each block
would be received entire. In fact,
during my simplistic testing, this
was the case and it was only under
a stressed network and stressed
machines that this assumption
broke down.

“So once I’d worked out the why
and wherefore of the bug, I had to
squash it with some new data
structure. I wanted some explicit
functionality. There must be an Add
operation to add a bunch of data (a
block of bytes) to the structure.

“There must be a Remove opera-
tion to remove a set of bytes from
the structure.

“I must be able to know how
many data bytes there were in the
structure, a Count property if you
will.

FirstOfMonth := EncodeDate(1998, 12, 1);
FirstDay := DayOfWeek(FirstOfMonth);
if FirstDay <= 4 then
ThirdWed := 4 - FirstDay + 14 + FirstOfMonth

else
ThirdWed := 4 - FirstDay + 21 + FirstOfMonth

function GetDateForDayOfMonth(aWhichOne : integer; aDay : integer; aMonth :
integer; aYear : integer) : TDateTime;

var
Month1st : TDateTime;
Day1st : integer;

begin
... {validate}
{calculate}
Month1st := EncodeDate(aYear, aMonth, 1);
Day1st := DayOfWeek(Month1st);
if (Day1st <= aDay) then
Result := aDay - Day1st + ((aWhichOne-1) * 7) + Month1st

else
Result := aDay - Day1st + (aWhichOne * 7) + Month1st;

if (Result - Month1st + 1) > MonthDays[IsLeapYear(aYear), aMonth] then
Result := 0.0;

end;

➤ Listing 4: Calculating the nth Monday, etc, of a month.

function CalcFirstWeek(aYear : integer) : TDateTime;
{returns date of the Monday of week 1 of the given year}
const
DOWThu = 5;

var
Month1stJan : TDateTime;
Day1stJan : integer;

begin
Month1stJan := EncodeDate(aYear, 1, 1);
Day1stJan := DayOfWeek(Month1stJan);
if (Day1stJan <= DOWThu) then
Result := DOWThu - Day1stJan + Month1stJan - 3

else
Result := DOWThu - Day1stJan + Month1stJan + 4;

end;
procedure GetISODate(aDate : TDateTime; var aYear :
integer; var aWeek : integer; var aDay : integer);

var
WeekOneStart: TDateTime;
Year : word;
Month : word;
Day : word;

begin
{calculate date of Monday for first week for date's year}
DecodeDate(aDate, Year, Month, Day);
WeekOneStart := CalcFirstWeek(Year);
{if the given date is greater than/equal to the 1st week

start date calculate the week number and day number}
if (aDate >= WeekOneStart) then begin
aYear := Year;
aWeek := (Trunc(aDate - WeekOneStart) div 7) + 1;
aDay := (Trunc(aDate - WeekOneStart) mod 7) + 1;
{check to see if the given date could appear in the
first week of the following year, if so so do the same
calculation again, but for the next year}
if ((aDate - WeekOneStart) > 364) then begin
WeekOneStart := CalcFirstWeek(Year+1);
if (aDate >= WeekOneStart) then begin
aYear := Year+1;
aWeek := (Trunc(aDate - WeekOneStart) div 7) + 1;
aDay := (Trunc(aDate - WeekOneStart) mod 7) + 1;

end;
end;

end
{if the given date is less than the 1st week start date,
it'll be in the last week of the previous year, so do
the same calculation again, but for the prior year}
else begin
dec(Year);
WeekOneStart := CalcFirstWeek(Year);
aYear := Year;
aWeek := (Trunc(aDate - WeekOneStart) div 7) + 1;
aDay := (Trunc(aDate - WeekOneStart) mod 7) + 1;

end;
end;

➤ Listing 5:
Calculating the ISO date.

➤ Listing 3

38 The Delphi Magazine Issue 40

“The structure must be able to
grow itself if required.

“And finally, I needed a Peek
operation. The blocks of data I was
passing from machine to machine
were messages. Each message had
the same header, and then there
might be some extra data tacked
onto the end of the message. There
was a field in the message header
that detailed the size of the entire
message in bytes. If I had an opera-
tion that allowed me to quickly
look at the first few bytes of data, I
could peek at the length field for
the next message and determine
from the Count property whether
the entire message was present in
the structure or not.”

I took a sip of cola; Father Christ-
mas finally pulled up the other
chair in the office and sat down.

“My first thought was a circular
queue. In other words, have a large
array of bytes and have two point-
ers into that array: the head
pointer, where I remove data and
the tail pointer, where I add data.
Of course, there comes a point
when the tail pointer wraps around
from the end of the array to the
beginning again and the available
data consists of the bit from the
head pointer to the end of the
array, and the bit from the
beginning to the tail pointer.

“But I just have this abhorrence
of circular queues and try and
avoid them whenever possible. I
don’t know why, but I just get this
series of mental blocks when I try
and code around the data wrap-
around I just described. Luckily for
me, my required Peek operation
precluded me using a circular
queue. There’s no way I’d counte-
nance having a Peek operation that
required me to stitch together the
two pieces of data after a wrap-
around had happened. It was likely
I would be using Peek a lot, so it had
to be fast.

“So, what else could I use then? I
thought about it for a while and
decided on a linear queue instead,
one with an overflow area. Let me
explain what I mean. Let’s suppose
that the user of the queue states
that he wants enough room for
1,024 bytes of data. In fact, the
queue allocates an array of bytes of

twice that size so that it has an
overflow area. As you add and
remove data from the queue the
head and tail pointers move along
the array into the overflow area.
Think of the Add operation: the first
thing that happens is that we must
check to see if there’s enough
room in the array to hold the new
block of data. If so fine, we add it
and advance the tail pointer to the
end of the new data. If we don’t, we
create a new array of a larger size
(say twice as large), copy over the
data in the existing array, and then
add the data as before. But we
don’t copy the data into the same
place in the new array: we copy it
so that it appears at the front of the
array and reset our head and tail
pointers accordingly. Since we
have to copy the data when grow-
ing the array, let’s make the most of
it and copy the data to the front of
the array and put off any other
moves as long as we can.

“Now think of the Remove opera-
tion. We copy the data from the
head pointer onwards into the
user’s buffer, and advance the
head pointer. If the head pointer
now equals the tail pointer, there’s
no more data in the array, so the
queue resets both pointers to the
front of the queue. If this isn’t the
case, there is still data in the array,
so we check to see whether the
head pointer has passed into the
overflow area; in other words
whether we’ve reached and passed
the half way mark. If we have, all of
the data appears in the overflow
area and so we take the opportu-
nity to copy it all back into the first
half of the array.

“As you can imagine, I’m always
trying to avoid the copying of data
when the head pointer reaches the
half-way mark in the array, by
having the queue reset the head
and tail pointers towards the front
of the array whenever I can.

“And the big plus of this queue is
that the Peekoperation just returns
the head pointer. Mind you, a big
minus is that the Peek operation
makes the queue completely
non-thread-safe: since the Peek
operation returns a pointer into an
internal structure, you’ll have a
problem if several threads are

adding or removing data. The
internal structure may be replaced
by another array, the data may be
removed by another thread, and
so on. The only way round this is to
alter the Peek operation so that it
copies the data into a user buffer in
a thread-safe manner, but of
course this still means that there
can only be one consumer of data
from the queue: it’s all very well
peeking at data only to find that it’s
gone when you go to remove it.”
Father Christmas nodded sagely at
this.

I showed him the code I’d
written (available on this month’s
disk) and he pored over it for a
while. “Neat,” was his only
comment.

“While we’re knocking around
ideas for stocking algorithms,” I
said, “I’ve got a real good one. This
is something that caught me out a
few years ago: shuffling cards.
Imagine you have a zero-based
array with 52 elements containing
the numbers from 1 to 52 in order,
representing a sorted deck of
cards. Implement an algorithm
that efficiently shuffles the
elements in an unbiased way.”

He thought for a while, smiled
and said, “All right, for each ele-
ment in turn, generate a random
number from 1 to 52 and swap it
with the element at that random
position.” He typed:

for i := 0 to 51 do begin
RandInx := Random(52);
Temp := CardsArray[RandInx];
CardsArray[RandInx] :=
CardsArray[i];

CardsArray[i] := Temp;
end;

“Pretty good,” I said. “That’s
exactly the algorithm I came up
with. But, and it’s a big but, it gives
way too many permutations of the
cards, and worse, some permuta-
tions appear more often than
others.” He looked thoughtful, and
I went on. “After one move, the per-
mutation we get is just one of 52
possible ones. After two moves,
the permutation we get is again
one out of a possible 52, so over
the two moves we now have one
out of a possible 522 permutations.

December 1998 The Delphi Magazine 39

As you can see, each move multi-
plies the number of permutations
by 52, so after 52 moves we have a
single permutation out of a whop-
ping 5252 of them, which according
to my calculator is...” Tap, tap, tap.
“1.7 * 1089.”

“So?” Father Christmas asked. “It
sounds pretty thorough to me.”

“Let’s go back to first principles.
In a shuffled deck, which is a single
permutation of the cards, the prob-
ability that the first card in our per-
mutation appears at the first
position is 1/52. Given that, the
probability that the second card
appears at the second position is
1/51, since we already know where
one card is, remember. The proba-
bility that the third card appears at
the third position is 1/50, and so
on. The probability therefore of
getting our particular permutation
is 1/52!, where 52! means 52
factorial, or 52 * 51 * 50..., all the
way down to 1. So there are 52! dis-
tinct different permutations of a
deck of cards, which is 8.0 * 1067,
another whopping huge number.
But the problem is that 52! does not

divide 5252 exactly (pretty obvious
since 52! has some prime divisors
that don’t divide 52) and so some
permutations must occur more
often than others, making the algo-
rithm biased. No, what we must do
is shuffle the cards the way we cal-
culated the number of permuta-
tions for a deck: select one out of
the 52, then select one out of the
remaining 51, and then select one
out of the remaining 50 and so on.
Of course, you can apply this shuf-
fling algorithm to randomly select
a subset of elements from an
array.” I typed up Listing 6.

“Excellent!” Father Christmas
beamed. “This is exactly the kind
of thing I wanted. A couple more of
these stocking algorithms and I
think we’re done.” I nodded, sup-
pressing a yawn. It was getting
rather late and I had to go to work
in the morning.

“Here’s an interesting one,” he
said. “Given a floating point value
between 0 and 1, in a double vari-
able say, how do you work out the
nearest fraction that equals it? For
example, if I gave you 0.625, how

procedure Shuffle(var aArray; aItemCount : integer; aItemSize : integer);
var
Inx, RandInx : integer;
SwapItem : PByteArray;
A : PByteArray absolute aArray;

begin
if (aItemCount > 1) then begin
GetMem(SwapItem, aItemSize);
try
for Inx := 0 to (aItemCount - 2) do begin
RandInx := Random(aItemCount - Inx);
Move(A^[Inx*aItemSize], SwapItem^, aItemSize);
Move(A^[RandInx*aItemSize], A^[Inx*aItemSize], aItemSize);
Move(SwapItem^, A^[RandInx*aItemSize], aItemSize);

end;
finally
FreeMem(SwapItem, aItemSize);

end;
end;

end;

➤ Listing 6: Shuffling an array.

40 The Delphi Magazine Issue 40

would you calculate that it equals
5/8?”

I stared at him. “You’re nuts.
Anyway, what about rounding
errors? Unfortunately, it’s not a
very well known fact that binary
floating point values can only store
powers of ½ exactly, everything
else is an approximation. It’s a bit
like saying 1/7 equals 0.142857: of
course it doesn’t exactly because
it’s just an approximation to 6
decimal places.”

“Well, devise an algorithm that
approximates the fraction then.”
Smug wasn’t the word.

“I suppose multiplying by 10 and
stripping off the integer part until
the remainder was less than some
small value won’t count. For my
example of 0.142857, we’d get a
fraction of 142857/1000000.” If I’d
had a spittoon, Father Christmas
would have availed himself of it.

I pondered for a while and
scribbled on a piece of paper. I
seemed to vaguely recollect some-
thing I’d written at university
about continued fractions, but
when you get as old as me, you
have to gently coax your neurons
towards the right answer. Some
scribbling time later, I came up
with a solution.

“Here goes. I’ll use continued
fractions. A continued fraction
looks a little bizarre (see Figure 1)
and can make your head hurt a
little, especially if they’re infinite in
extent, but in our algorithm we
won’t worry about that. You can
reduce the amount of space
needed to write a continued frac-
tion which has all the numerators

as 1 by using a simple array repre-
sentation: the one in the figure is
[2, 1, 2, 1, 1, 4, ...] for example. To
calculate the decimal representa-
tion of a continued fraction, you
work your way up the fraction, or if
we use the array representation,
from the right to the left. There is
also a matrix algorithm for calcu-
lating the value of a continued frac-
tion from the left, but we won’t go
into that now.

“What we do is this: given a
number, subtract the integer part,
store it in the first array element.
Then find the reciprocal of the frac-
tional part. Subtract the integer
part, store it in the second array
element. Then find the reciprocal
of the fractional part. Continue like
this until the fractional part is less
than some agreed constant, usu-
ally called epsilon, say 0.0001.
What we’ve done is to find the near-
est continued fraction to our origi-
nal number. All that’s required
then is to convert the continued
fraction into a normal, or vulgar,
fraction. Let’s try it with
3.14159292, almost π. Subtract 3,
store it. Find the reciprocal of the
fractional part: 7.062500017656.
Subtract 7, store it, find the recip-

2 + 1

1 + 1

2 + 1

1 + 1

1 + 1

4 + ...

➤ Figure 1: A continued fraction.

rocal: 15.99999548. Subtract 15,
store it, find the reciprocal:
1.00000452. Subtract 1, store it.
The result of the subtraction is
smaller than our assumed epsilon
and so we stop. We then calculate
the vulgar fraction from the
continued fraction and get
355/113.”

“Amazing,” said Father Christ-
mas. “Let’s see the code!” This
time it took a little longer and the
testing was a little more intense
and involved much use of my cal-
culator. You can see the code in
Listing 7. With some testing we
noticed that the algorithm wasn’t
perfect: it seemed that the number
of inversions the routine per-
formed increased the error margin
quite quickly. But it was pretty
good, nevertheless.

When I finished I was tired and
slumped back on my chair. “I’ve
really got to go to bed now,
TurboPower awaits me in the
morning.”

“Just one more algorithm, is all I
ask,” he wheedled. “Something
you said earlier triggered some-
thing in my mind; and this algo-
rithm will wrap things up nicely.
When we were talking about
checksums, you mentioned that
the ISBN check digit can some-
times be 10, or X in Roman numer-
als.” I nodded, light slowly
dawning in my head, and he contin-
ued, confirming my suspicions.
“So for the last algorithm write a
routine or pair of routines that
converts from a binary integer to a
Roman numeral string and
vice-versa.” I could hear the relish
with which he said the final Latin
words.

procedure ConvertFraction(aValue : double;
var aNumerator : longint; var aDenominator : longint);

var
Sign, Iter, i : integer;
Num, Denom, Temp : double;
ContFrac : array [0..pred(MaxContFracDepth)] of integer;

begin
if aValue < 0.0 then begin {get sign of decimal fraction}
Sign := -1;
aValue := abs(aValue);

end else
Sign := 1;

{create the continued fraction}
FillChar(ContFrac, sizeof(ContFrac), 0);
ContFrac[0] := Trunc(aValue);
Iter := 1;
aValue := Frac(aValue);
while (aValue >= CvtFracEpsilon) and
(Iter < MaxContFracDepth) do begin
aValue := 1.0 / aValue;
ContFrac[Iter] := Trunc(aValue);
inc(Iter);

aValue := Frac(aValue);
end;
dec(Iter);
{convert continued fraction into normal vulgar fraction}
if (Iter = 0) then begin
aNumerator := ContFrac[Iter];
aDenominator := 1;

end else begin
Num := 1;
Denom := ContFrac[Iter];
for i := pred(Iter) downto 0 do begin
Temp := Denom * ContFrac[i] + Num;
Num := Denom;
Denom := Temp;

end;
if (Denom > MaxLongint) or (Num > MaxLongint) then begin
aNumerator := -1;
aDenominator := -1;

end else begin
aNumerator := Sign * Trunc(Denom);
aDenominator := Trunc(Num);

end;

➤ Listing 7: Converting decimal to vulgar fraction.

December 1998 The Delphi Magazine 41

“Believe it or not, the conversion
from a Roman number to an ordi-
nary number was the first bit of
code I copied from a magazine arti-
cle, way back when. I wrote it all
out longhand, maybe the photo-
copier wasn’t working. Anyway...” I
rummaged though my filing system
again, and produced a piece of
paper with a flourish. “It’s even
written in GWBASIC with line num-
bers and everything.” We looked at
it, perusing the unfamiliar DATA
statements, the DIMs, the LETs, the
myriad GOTOs to line numbers, the
general spaghettiness of it all.

“Good grief,” he muttered.
“This’ll take ages.”

“Rubbish,” I said matter-
of-factly. “Let’s do it the easy way
round first: convert a longint to a
Roman number string. Once we
have that we’ll have some test data
to test the opposite routine auto-
matically.” I picked up a general
reference book and turned to the
section on Roman numbers. “I is
one, V is five, X is ten, L is fifty, C is
one hundred, D is five hundred and
M is one thousand. The Romans
used a bizarre system to denote
5,000 and above, so we’ll ignore
numbers above 3,999 (which is
MMMCMXCIX). There’s no zero as
it was invented much later.

“The easiest way of doing this is
to make the code table driven.
Create tables for the single digits,
the tens, the hundreds, and the
thousands. Four tables in all. Then
take the input value, peel off the
powers of ten, and replace them
with the entry in the relevant
table.” I typed away and produced
Listing 8.

Father Christmas nodded and
gestured at the GWBASIC code.
“And now the other way.”

“The code illustrates a table
driven state machine,” I started off
confidently. “Since I’ve absolutely
no desire to convert GWBASIC spa-
ghetti code into Object Pascal, let’s
recreate the state machine, regen-
erate the table describing it, and
the code will follow pretty quickly
from that.

“To make this easier to start off
with, let’s assume that we only
have the X, V, and I numerals and
we’ll design the state machine for

numbers less than ten.
Once we’ve analyzed this
case we can easily expand
our design to the rest. Look
at single characters first. A
V can only be followed by
an I. An I can be followed by
an X, a V or an I (to a maxi-
mum of three in a row). Now
look at double characters.
IX cannot be followed by
anything, the same apply-
ing to IV, they are termina-
tors. Double I cannot be
followed by V or X, it can
either stop there or it can
be followed by another I. This gives
us the state machine in Figure 2. $
means a terminating state. We can
rewrite this as Table 1. Here the
entries in the table are the amount
to add to a sum as we parse a
Roman number string followed by
the state to move to. If we ever hit a
dash our Roman number is invalid,
or similarly if we have another
letter after hitting state $.

“Let’s try it with IX. We start off in
state # with sum 0. The first charac-
ter is an I. We look along the state #
line until we reach the I column.
This says add 1 and move to state
b. The next character is an X. Look
along the state b line until we reach
column X. This says add 8 and
move to state $. We have no more
characters and so we finish with a
total of 9.

“If we try it with VV, we’ll hit a
dash, meaning the Roman number
was invalid. If we try IIIX, we’ll have
an extra character after getting to
state $, which again means we got
an error.”

Father Christmas suddenly
interrupted. “I see what you’re get-
ting at now. The analysis we’ve
done for the numbers 1 to 9, also
applies to the tens from 10 to 90,
using the characters C, L and X.
And similarly the hundreds from

const
RomanDigits : array [1..9] of string[4] =

('I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', 'IX');
Roman10s : array [1..9] of string[4] =

('X', 'XX', 'XXX', 'XL', 'L', 'LX', 'LXX', 'LXXX', 'XC');
Roman100s : array [1..9] of string[4] =

('C', 'CC', 'CCC', 'CD', 'D', 'DC', 'DCC', 'DCCC', 'CM');
Roman1000s : array [1..3] of string[3] =

('M', 'MM', 'MMM');
function IntToRoman(aValue : integer) : string;
var Digit : integer;
begin
if (aValue <= 0) or (aValue >= 4000) then
RaiseBadNumberError(aValue);

Digit := aValue div 1000; {get 1000s digit and convert}
if (Digit <> 0) then
Result := Roman1000s[Digit]

else
Result := '';

aValue := aValue mod 1000; {get 100s digit and convert}
Digit := aValue div 100;
if (Digit <> 0) then
Result := Result + Roman100s[Digit];

aValue := aValue mod 100; {get 10s digit and convert}
Digit := aValue div 10;
if (Digit <> 0) then
Result := Result + Roman10s[Digit];

Digit := aValue mod 10; {get singles digit and convert}
if (Digit <> 0) then
Result := Result + RomanDigits[Digit];

end;

➤ Listing 8: Converting integer to Roman number.

Start state: #

State: a

State: b State: $

State: $

State: d

State: c

State: $

V

V

X

I

I

I

I

I

➤ Figure 2: A state machine for parsing
Roman numbers between I and IX.

Letter: X V I
State: # - 5,a 1,b

a - - 1,c
b 8,$ 3,$ 1,d
c - - 1,d
d - - 1,$

➤ Table 1: The I to IX state
machine as a table.

42 The Delphi Magazine Issue 40

100 to 900 using the characters M,
D, and C. Etcetera, etcetera.” He
scribbled on my legal pad. “In fact,
the final state machine table will
have 7 columns, one for each
Roman letter and 18 rows, one for
each state.”

“I agree,” I said. We alternately
scribbled on the paper, rearrang-
ing rows and re-lettering states and
compressing the table until we

const
RomanNumerals : string[7] = 'MDCLXVI';
RomanStateMc : array [0..17, 1..7] of word =

{Numeral: M D C L X V I}
{State 0:} ((32001, 16004, 3205, 1609, 330, 174, 47),

{ 1:} (32002, 16004, 3205, 1609, 330, 174, 47),
{ 2:} (32003, 16004, 3205, 1609, 330, 174, 47),
{ 3:} (0, 16004, 3205, 1609, 330, 174, 47),
{ 4:} (0, 0, 3206, 1609, 330, 174, 47),
{ 5:} (25608, 9608, 3207, 1609, 330, 174, 47),
{ 6:} (0, 0, 3207, 1609, 330, 174, 47),
{ 7:} (0, 0, 3208, 1609, 330, 174, 47),
{ 8:} (0, 0, 0, 1609, 330, 174, 47),
{ 9:} (0, 0, 0, 0, 331, 174, 47),
{10:} (0, 0, 2573, 973, 332, 174, 47),
{11:} (0, 0, 0, 0, 332, 174, 47),
{12:} (0, 0, 0, 0, 333, 174, 47),
{13:} (0, 0, 0, 0, 0, 174, 47),
{14:} (0, 0, 0, 0, 0, 0, 48),
{15:} (0, 0, 0, 0, 287, 127, 49),
{16:} (0, 0, 0, 0, 0, 0, 49),
{17:} (0, 0, 0, 0, 0, 0, 63));

{-State machine table to convert from Roman numbers to
Integers. Each entry is equal to (ValueToAdd * 32) +
NextState for a given State/Roman numeral. State 0 is

the initial state; state 31 is the terminator state.}
function RomanToInt(aValue : string) : integer;
var
i, ChInx, State, StateValue : integer;
Ch : char;

begin
Result := 0;
State := 0;
for i := 1 to length(aValue) do begin
if (State = 31) then
RaiseBadRomanNumberError(aValue, i);

{get the next character, check to see if it's valid}
Ch := UpCase(aValue[i]);
ChInx := Pos(Ch, RomanNumerals);
if (ChInx = 0) then
RaiseBadCharError(aValue, aValue[i], i);

{get the value to add, if it's zero we've got a badly
formed Roman number}

StateValue := RomanStateMc[State, ChInx];
if (StateValue = 0) then
RaiseBadRomanNumberError(aValue, i);

inc(Result, StateValue div 32);
State := StateValue mod 32;

end;
end;

➤ Listing 9: Converting
Roman number to integer. reached a consensus. “Now,” I said,

“the code is pretty simple.” And so
it was and together we produced
Listing 9 after some testing. Luckily
for us and you it didn’t have a GOTO
in sight.

We both yawned simulta-
neously. “Now, it’s really time for
bed,” I said. He smiled and agreed
and thanked me for my work. We
ceremoniously polished off our
cans of cola and tossed them into
the wastepaper basket by the wall.
Mine missed so I walked over to

pick it up. When I looked back the
room was empty.

Julian Bucknall wishes all his read-
ers a Merry Christmas and a Happy
New Year (or whatever they may
celebrate). In 1999 he really will
get to Part II of his graphs series.
The code with this article is fun
and freeware and can be used
as-is in your own applications.

© Julian M Bucknall, 1998

